Continuity bounds for information characteristics of quantum channels depending on input dimension

نویسنده

  • Maksim E. Shirokov
چکیده

We show how to use properties of the quantum conditional mutual information to obtain continuity bounds for information characteristics of quantum channels depending on their input dimension. First we prove tight estimates for variation of the output Holevo quantity with respect to simultaneous variations of a channel and of an input ensemble. Then we obtain tight continuity bounds for output conditional mutual information for a single channel and for n copies of a channel. As a result tight and close-to-tight continuity bounds for basic capacities of quantum channels depending on the input dimension are obtained. They complement the Leung-Smith continuity bounds depending on the output dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy

We obtain continuity bounds for basic information characteristics of quantum channels depending on their input dimension (when it is finite) and on the maximal level of input energy (when the input dimension is infinite). We pay a special attention to the case when the input system is the multi-mode quantum oscillator. First we prove continuity bounds for the output conditional mutual informati...

متن کامل

Tight continuity bounds for the quantum conditional mutual information, for the Holevo quantity and for capacities of quantum channels

First we consider Fannes’ type and Winter’s type tight continuity bounds for the quantum conditional mutual information and their specifications for states of special types. Then we analyse continuity of the Holevo quantity with respect to nonequivalent metrics on the set of discrete ensembles of quantum states. We show that the Holevo quantity is continuous on the set of all ensembles of m sta...

متن کامل

On approximation of quantum channels

Although a major attention in quantum information theory so far was paid to finite-dimensional systems and channels, there is an increasing interest in infinite-dimensional generalizations (see [4], [8], [9], [15]-[18] and references therein). In the present paper we develop an approximation approach to infinite dimensional quantum channels based on detailed investigation of the continuity prop...

متن کامل

Amortized entanglement of a quantum channel and approximately teleportation-simulable channels

This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of e...

متن کامل

Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints

We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: First, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.00568  شماره 

صفحات  -

تاریخ انتشار 2016